BONFERRONI-TYPE INEQUALITIES; CHEBYSHEV-TYPE INEQUALITIES FOR THE DISTRIBUTIONS ON [0, n]
نویسنده
چکیده
Abs t rac t . An elementary "majorant-minorant method" to construct the most stringent Bonferroni-type inequalities is presented. These are essentially Chebyshev-type inequalities for discrete probability distributions on the set {0, 1 , . . . , n}, where n is the number of concerned events, and polynomials with specific properties on the set lead to the inequalities. All the known resuits are proved easily by this method, b'~rther, the inequalities in terms of all the lower moments are completely solved by the method. As examples, the most stringent new inequalities of degrees three and four are obtained. Simpler expressions of M~rg~ritescu's inequality (1987, Stud. Cerc. Mat., 39, 246-251), improving Galambos' inequality, are given.
منابع مشابه
General Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملInequalities of Ando's Type for $n$-convex Functions
By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.
متن کاملSome Perturbed Inequalities of Ostrowski Type for Functions whose n-th Derivatives Are Bounded
We firstly establish an identity for $n$ time differentiable mappings Then, a new inequality for $n$ times differentiable functions is deduced. Finally, some perturbed Ostrowski type inequalities for functions whose $n$th derivatives are of bounded variation are obtained.
متن کاملGeneralization of the Lyapunov type inequality for pseudo-integrals
We prove two kinds of Lyapunov type inequalities for pseudo-integrals. One discusses pseudo-integrals where pseudo-operations are given by a monotone and continuous function g. The other one focuses on the pseudo-integrals based on a semiring 0; 1 ½ ; sup; ð Þ , where the pseudo-multiplication is generated. Some examples are given to illustrate the validity of these inequalities. As a generali...
متن کاملOn Bernstein Type Inequalities for Complex Polynomial
In this paper, we establish some Bernstein type inequalities for the complex polynomial. Our results constitute generalizations and refinements of some well-known polynomial inequalities.
متن کامل